Igher Technological Institute
Computer Science Department

Computer Graphics

Dr Osama Farouk
Dr Ayman Soliman
Dr Adel Khaled

Lecture two
Graphics Output Primitives

\

OpenGL Point Functions

The default color for primitives is white and the default point size is equal
to the size of one screen pixel.

® The form for an OpenGL specification of a point position is
glBegin (GL_POINTS);
glVertex* (); //The coordinate values for a single position
glEnd ();

® In the following example, three equally spaced points are plotted along a
two-dimensional straight-line path with a slope of 2 (Figure). Coordinates
are given as integer pairs. y

glBegin (GL_POINTS); 2004 .
glVertex2i (50, 100); 150+ .
100 + .

glVertex2i (75, 150);

glVertex2i (100, 200);

IEnd () 50 100 150 X
g J FIGURE Display of three point positions
generated with glBegin (GL_POINTS).

Alternatively, we could specify the coordinate values for the preceding points in
arrays such as

int pointa [] = {50, 100};
int point2 [] = {75, 150};
int point3 [] = {100, 200};
and call the OpenGL functions for plotting the three points as
glBegin (GL_POINTYS);
glVertex2iv (pointa);
glVertex2iv (point2);
glVertex2iv (point3);
glEnd ();

And here is an example of specifying two point positions in a three dimensional world
reference frame. In this case, we give the coordinates as explicit floating-point values.

glBegin (GL_POINTYS);

glVertex3f (-78.05, 909.72, 14.60);
glVertex3f (261.91, -5200.67, 188.33);
|[End ();

Using this class definition, we could specify two- dimensional,
world-coordinate point position with the statements

wcPt2D pointPos;

pointPos.x = 120.75;

pointPos.y = 45.30;

glBegin (GL_POINTYS);

glVertex2f (pointPos.x, pointPos.y);
glEnd ();

Look to pages in textbook "Computer Graphics with open GL"”
Pages(88-89)

OpenGL LINE FUNCTIONS

p3 p3 p3
pl p3 pl p3 /\ pl
p2 pd p2 p4 p2 pt
(a) (b) (c)

he following code could generate the display shown in Figure.

glBegin (GL_LINES); glBegin (GL_LINES_STRIP); glBegin (GL_LINES_LOOP);

glVertex2iv (p1); glVertex2iv (p1); . |
glVertex2iv (p2); glVertex2iv (p2); glVertexiv (p1);
[Vertex2iv ()f glVertex2iv (p3); glVertexziv (p2);
g| - EX glVertex2iv (p4); gIVertexz!v (p3);
glxer'iexz!v §p4;; glVertex2iv (p5); g:xe:exz!v §p4;;
ertex2iv (p5); _ ertexaiv (ps);

3 e glEnd (); g p

glEnd ();

LINE-DRAWING ALGORITHMS

® A straight-line segment in a scene is defined by the coordinate
positions for the endpoints of the segment.

®The line color is loaded into the frame buffer at the
corresponding pixel coordinates.

® Stair-step effect (jaggies) produced when a line is generated
as a series of pixel positions.

oo
000 _
... FIGURE

Line Equations

y:m*.l‘—l—fi' (1) ¥o /

1 — 1
m=2md = H TR
Xend — XD FIGURE Line path
between endpoint positions
E] — .I:frﬂ N m * I|:| (3) (x0, I;J’D] and (Xend, Hend}-

For any given X interval X along a line, we can compute
the corresponding 5y interval By from Eq. 2 as

The Cartesian slope-intercept equation for a straight line is

¥Yend T
A |
1 |
|
Yo 1 '

Sy=m-8x (4

) If FIGURE Straight-line
5 Y — — segment with five sampling
R (5) positions along the x axis
between xp and xepd-

The Digital Differential Analyzer (DDA)

We consider first a line with positive slope,

If the slope is less than or equal to 1, we sample at unit x intervals (9x = 1) and
compute successive y values as

Yerl = Y + (6)
Subscript k takes integer values starting from o, for the first point, and increases by
1 until the final endpoint is reached. Since m can be any real number between 0.0
and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column we are processing.

For lines with a positive slope greater than 1.0,we reverse the roles of xand y.
That is, we sample at unit y intervals (4y = 1) and calculate consecutive x values as

1
Xppl = Xk + — (7)
m

In this case, each computed x value is rounded to the nearest pixel position
along the current y scan line.

Equations 6 and 7 are based on the assumption that lines are to be processed
from the left endpoint to the right endpoint

If this processing is reversed, so that the starting endpoint is at the right, then either
we have éx=-1 and

Yeil = Y —m

or (when the slope is greater than 1) we have éy = -1 with

f 1
Tk+1 = Xk .
This algorithm is summarized in the following procedure, which accepts as input
two integer screen positions for the endpoints of a line segment . Horizontal and
vertical differences between the endpoint positions are assigned to parameters dx
and dy. The difference with the greater magnitude determines the value of
parameter steps. Starting with pixel position (xo, yo) ,we determine the offset
needed at each step to generate the next pixel position along the line path. We loop
through this process steps times. If the magnitude of dx is greater than the
magnitude of dy and xo is less than xEnd, the values for the increments in the x and
y directions are 1 and m, respectively. If the greater change is in the x direction, but
X0 is greater than xEnd, then the decrements -1 and -m are used to generate each
new point on the line. Otherwise, we use a unit increment (or decrement) in the y
irection and an x increment % (or decrement) of

The digital differential analyzer (DDA) Algorithm: (textbook pgs)

he digital differential analyzer (DDA) is a scan-conversion line algorithm

ased on calculating either§x or §y , using Eq. 4 or Eq. 5.

#include <stdlib.h>
#include <math.h>

inline int round (const float a) (return int (a + 0.5);)

void lineDDA (int x0, int y0, int xEnd, int yEnd)
(
int dx = xEnd - x0, dy = yEnd - y0, steps,
float xIncrement, yIncrement, x = x0, y = y0;

if (fabs (dx) > fabs (dy))
steps = fabs (dx);
else
steps = fabs (dy);
xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps):

setPixel (round (x), round (y)):
for (k = 0; k steps; k++) [

x += xIncrement;

y += yIncrement;

setPixel (round (x), round (y)):

e

3 Specified =
[.mE Fath

12 >"/
]]
@

10 11 12 13

FIGURE 3-8 A section

of a display screen where a
straight-line segment is to be
plotted, starting from the

ixel at column 10 on scan
ine 11.

., %

Specified —
] . Line Path

49
48
[,
50 5l 52 53
FIGURE 3-3 A section

of a display screen where a
negative slope line segment is
to be plotted, starting from
the pixel at column 5 on scan
line 5.

EXAMPLE 1:

DDA- Digital Differential Analyser

This case is for slope (m) less than 1. Slope (m) =(7-1)/(8-1)=6/7 .

S-1: ¥1=1; y1=1; x2=8; y2=7.

S-2: m={7-1)/(8-1) = 6/7 which is less than 1.

S-3: As m (6/7) is less than 1 therefore x is increased and y is calculated.

S-4: The step will be x1=x1+1 and y1= y1+6/7

X1
p1 2
pz2 3
p3 4
p4 |5
PS5 6
P67

Y1
2

12+6/7=29

29+6/7=38

3.8+ &E =47

4.7+6/7=5.6

56+6/7=7.0

The algorithm will stop here as the x value has reached 7.

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (2,2) to (8,7)

S-5: The points genrated would be x1=1+1 and Y1=1+(5/7) => 1+0.9=>1.9=> approx 2. So X 1=2 and Y1=~

Pixel Plotted
2.2
33
4.4

55

6.6

77

EXAMPLE 2:

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (0,0) to (4,6)

This case is for slope {m) greater than 1. Slope (m) =(6-0)/(4-0) = 6/4 .

S-1: x1=0; y1=0; x2=4; y2=6

5-2: m=(6-0)/(4-0) = 6/4 which is more than 1.

S-3: As m (6/4) is greater than 1 therefore y is increased and x is calculated.
S-4: Now increase the value of y and calculate value of x.

» To calculate x, take line equation and find x, x2=x1+1/m

* The step will be y1=y1+1 and x1 =x1+1/(6/4) , After Simplification, Every time y1=y1+1 and x1=x1+4/6

Y1 X1 Pixel Plotted
p0 0 0 (0,0)
p1 1 X1= (0)+4/6=0.67 =1 (1,1)
p2 2 0.67+4/6=1.34 (1.2)
p3 3 1.34+4/6=2,01 (2.3)
p4 4 2.01+4/6=2.68 (3.4)
p5 5 2.68+4/6=3.35 (3.5)
6 6 3.35+4/6=4.02 (4,6)

EXAMPLE 3:

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (2,3) to (9,8)

S-1:x1=2, y1=3 and x2=9, y2=8.
S-2: Calculate Slope m =(8-3)/(9-2) = 5/7, which is less than 1.
S-3: Since mis less than one that means we would increase x and calculate y.

S-4: So new x would be equal to old x plus 1 ® and calculate y as newy = old y +m(slope). — Easy to understand, We
mean the following

x1=x1+1 and y1=y1+(5/7)

X1 Y1 Pixel Plotted

po 2 3 23
345/7 => 26/7 =>

p1 3 3.4
26/7=>3.711

p2 4 3.71+5/7=4.42 4,4

p3 5 4.42+5/7=5.13 5.5

p4 6 5.13+5/7=5.84 6.6

pS 7 584 +5/7=655 7.7

p6 8 6.55+5/7=7.26 87

p7 9 7.26+5/7=7.97 9,8

The algorithm would stop here as we have reached the end point of the line (9,8)

Exercise :

Apply The digital differential analyzer (DDA) Algorithm to compute which
pixels should be turned on to represent the line from (20,10) to (30,18)

__dx | dy | steps | k | Xincrement | Yincrement | x | y | (qy)
20

10 (20,10)

1 0.8 21 10.8 (21,11)
22 11.6 (22,12)
23 12.3 (23,12)
24 131 (24,13)
25 13.9 (25,14)
26 14.7 (26,15)
27 15.5 (27,15)
28 16.3 (28,16)
29 17.1 EEELJEV))
30 17.9 (30,18)

10 8 10

O ON OO &~ W N B O

Bresenham'’s Line Algorithm

Bresenham’s Line-Drawing Algorithm for [m| < 1.0

1.
2.

5.

Input the two line endpoints and store the left endpoint in (xg, 1p).
Set the color for frame-buffer position (xy, 1); i.e., plot the first point.

Calculate the constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the
starting value for the decision parameter as

po = 2Ay — Ax

Ateach x; along the line, starting at k = 0, perform the following test.
It pr < 0, the next point to plotis (x; + 1, i) and

Pr+1 = Pk + 2Ay
Otherwise, the next point to plotis (x; + 1, 1 + 1) and
Pr+1 = Pr +2Ay —2Ax

Perform step 4 Ax — 1 times.

3 Specified

. Line Path /
[~

@

10

10 11 12 13

FIGURE A section
of a display screen where a
straight-line segment is to be
plotted, starting from the
pixel at column 10 on scan
line 11.

50 6
Specified —
49 " Line Path
48 -
50 51 52 53
FIGURE A section

of a display screen where a
negative slope line segment is
to be plotted, starting from
the pixel at column 50 on scan
line 50.

Bresenham'’s Line Algorithm

XAMPLE :(textbook p136-137)

To illustrate the algorithm, we digitize the line with endpoints
(20, 10) and (30, 18).

* Draw the line with endpoints (%}0,10) and (30, 18).
— Ax=30-20=10, Ay=178-10=8,
— pp=20Ay— Ax=16-10=6
— 20y=16, and 2Ay - 2Ax=-4

 Plot the initial position at (20,10), then

L pl (XH!: yhtl) ‘ ph tx&vlf lel)

M e ———— —— o

0 6 21.11) 5 6 (26, 15)

[. (22, 12) " 2 27.16)]

2 2 (23, 12) 7 2 (28, 16) T

3 14 (24,13) 8 14 29,17) 1

4 10 25, 14) 9 10 30,18) @ (T 1T

A \ N

Bresenham’s Line Algorithm
An implementation of Bresenham line drawing for slopes in the range
o<m<1o0isgiven in the following procedure

#finclude <stdlib.h>
#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. =/
void lineBres (dint x0, 4int 0. int =End., dint yEnd)
{
int dx = fabs (xEnd - =0),. dy = fabs{yEnd - 0};
int p = 2 * dy - d=x=:
int tweDy = 2 * dy, twoDyMinusDx = 2 * (dy - d=);
int =. ¥;

/* Determine which endpoint teo use as start position. */
if (x0 » =End) ([

= = =FEnd;

v = vEnd;

=FEnd = =0;
1

else {
Xo—8=x 0,3
y = y0:
1

setPixel (x, y):

while (x < xEnd) {
x =t
if (p < 0)
p t= twoDy;
else {
yt+:
p = twoDyMinusDx;
b}
setPixel (x, ¥y):;

End of Lecture
Good Luck!

See you
in next lecture...

EINID

