
Computer Graphics

Higher Technological Institute
Computer Science Department

Dr Osama Farouk
Dr Ayman Soliman
Dr Adel Khaled

Lecture two
Graphics Output Primitives

OpenGL Point Functions

• The default color for primitives is white and the default point size is equal
to the size of one screen pixel.

• The form for an OpenGL specification of a point position is

glBegin (GL_POINTS);

glVertex* (); //The coordinate values for a single position

glEnd ();

• In the following example, three equally spaced points are plotted along a
two-dimensional straight-line path with a slope of 2 (Figure). Coordinates
are given as integer pairs.

glBegin (GL_POINTS);

glVertex2i (50, 100);

glVertex2i (75, 150);

glVertex2i (100, 200);

glEnd ();

Alternatively, we could specify the coordinate values for the preceding points in
arrays such as

int point1 [] = {50, 100};

int point2 [] = {75, 150};

int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);

glVertex2iv (point1);

glVertex2iv (point2);

glVertex2iv (point3);

glEnd ();

And here is an example of specifying two point positions in a three dimensional world
reference frame. In this case, we give the coordinates as explicit floating-point values.

glBegin (GL_POINTS);

glVertex3f (-78.05, 909.72, 14.60);

glVertex3f (261.91, -5200.67, 188.33);

glEnd ();

Using this class definition, we could specify two- dimensional,
world-coordinate point position with the statements

wcPt2D pointPos;
pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);
glVertex2f (pointPos.x, pointPos.y);
glEnd ();

Look to pages in textbook “Computer Graphics with open GL”
Pages(88-89)

OpenGL LINE FUNCTIONS

The following code could generate the display shown in Figure.

glBegin (GL_LINES_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

glBegin (GL_LINES_LOOP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

LINE-DRAWING ALGORITHMS

• A straight-line segment in a scene is defined by the coordinate
positions for the endpoints of the segment.

• The line color is loaded into the frame buffer at the
corresponding pixel coordinates.

• Stair-step effect (jaggies) produced when a line is generated
as a series of pixel positions.

Line Equations

The Cartesian slope-intercept equation for a straight line is

For any given interval along a line, we can compute
the corresponding interval By from Eq. 2 as

(1)

(2)

(3)

(4)

(5)

The Digital Differential Analyzer (DDA)

We consider first a line with positive slope,

If the slope is less than or equal to 1, we sample at unit x intervals (= 1) and
compute successive y values as

Subscript k takes integer values starting from 0, for the first point, and increases by
1 until the final endpoint is reached. Since m can be any real number between 0.0
and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column we are processing.

For lines with a positive slope greater than 1.0,we reverse the roles of x and y.
That is, we sample at unit y intervals (= 1) and calculate consecutive x values as

In this case, each computed x value is rounded to the nearest pixel position
along the current y scan line.

(6)

(7)

Equations 6 and 7 are based on the assumption that lines are to be processed
from the left endpoint to the right endpoint

If this processing is reversed, so that the starting endpoint is at the right, then either
we have =−1 and

or (when the slope is greater than 1) we have = −1 with

This algorithm is summarized in the following procedure, which accepts as input
two integer screen positions for the endpoints of a line segment . Horizontal and
vertical differences between the endpoint positions are assigned to parameters dx
and dy. The difference with the greater magnitude determines the value of
parameter steps. Starting with pixel position (x0, y0) ,we determine the offset
needed at each step to generate the next pixel position along the line path. We loop
through this process steps times. If the magnitude of dx is greater than the
magnitude of dy and x0 is less than xEnd, the values for the increments in the x and
y directions are 1 and m, respectively. If the greater change is in the x direction, but
x0 is greater than xEnd, then the decrements −1 and −m are used to generate each
new point on the line. Otherwise, we use a unit increment (or decrement) in the y
direction and an x increment (or decrement) of .

The digital differential analyzer (DDA) Algorithm: (textbook p94)

The digital differential analyzer (DDA) is a scan-conversion line algorithm
based on calculating either or , using Eq. 4 or Eq. 5.

EXAMPLE 1:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (2,2) to (8,7)

EXAMPLE 2:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (0,0) to (4,6)

EXAMPLE 3:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (2,3) to (9,8)

Exercise :

Apply The digital differential analyzer (DDA) Algorithm to compute which

pixels should be turned on to represent the line from (20,10) to (30,18)

(x,y)yxY IncrementX Incrementkstepsdydx

(20,10)1020

(21,11)10.8210.81010810

(22,12)11.6221

(23,12)12.3232

(24,13)13.1243

(25,14)13.9254

(26,15)14.7265

(27,15)15.5276

(28,16)16.3287

(29,17)17.1298

(30,18)17.9309

Bresenham’s Line Algorithm

EXAMPLE :(textbook p136-137)

To illustrate the algorithm, we digitize the line with endpoints
(20, 10) and (30, 18).

Bresenham’s Line Algorithm

An implementation of Bresenham line drawing for slopes in the range
0 < m < 1.0 is given in the following procedure

Bresenham’s Line Algorithm

